Deep operator network (DeepONet) has demonstrated great success in various learning tasks, including learning solution operators of partial differential equations. In particular, it provides an efficient approach to predict the evolution equations in a finite time horizon. Nevertheless, the vanilla DeepONet suffers from the issue of stability degradation in the long-time prediction. This paper proposes a {\em transfer-learning} aided DeepONet to enhance the stability. Our idea is to use transfer learning to sequentially update the DeepONets as the surrogates for propagators learned in different time frames. The evolving DeepONets can better track the varying complexities of the evolution equations, while only need to be updated by efficient training of a tiny fraction of the operator networks. Through systematic experiments, we show that the proposed method not only improves the long-time accuracy of DeepONet while maintaining similar computational cost but also substantially reduces the sample size of the training set.
translated by 谷歌翻译
典型的深神经网络(DNN)后门攻击基于输入中嵌入的触发因素。现有的不可察觉的触发因素在计算上昂贵或攻击成功率低。在本文中,我们提出了一个新的后门触发器,该扳机易于生成,不可察觉和高效。新的触发器是一个均匀生成的三维(3D)二进制图案,可以水平和/或垂直重复和镜像,并将其超级贴在三通道图像上,以训练后式DNN模型。新型触发器分散在整个图像中,对单个像素产生微弱的扰动,但共同拥有强大的识别模式来训练和激活DNN的后门。我们还通过分析表明,随着图像的分辨率提高,触发因素越来越有效。实验是使用MNIST,CIFAR-10和BTSR数据集上的RESNET-18和MLP模型进行的。在无遗象的方面,新触发的表现优于现有的触发器,例如Badnet,Trojaned NN和隐藏的后门。新的触发因素达到了几乎100%的攻击成功率,仅将分类准确性降低了不到0.7%-2.4%,并使最新的防御技术无效。
translated by 谷歌翻译
在本文中,我们介绍了基于大型预训练的语言模型(PLM)pangu-alpha(Zeng等,2021)的中国预训练的开放域对话生成模型。与其他对大量对话数据进行培训的预训练的对话模型不同,我们旨在通过继承PLM的有价值的语言能力和知识来构建强大的对话模型,并以相对较少的数据和计算成本构建强大的对话模型。为此,我们训练大型PLM Pangu-Alpha的Pangu-bot,该机器人已被证明在各种中国自然语言任务上表现出色。我们研究了pangu-bot产生的响应的不同方面,包括响应质量,知识和安全性。我们表明,Pangu-Bot优于最先进的中国对话系统(CDIALGPT(Wang等,2020),Eva(Zhou等,2021),EVA2.0(Gu等,2022)) W.R.T.以上三个方面。我们还证明,可以轻松地部署pangu-bot,以在没有进一步训练的情况下产生情感反应。在整个经验分析中,我们还指出,Pangu-bot响应质量,知识正确性和安全性仍然远非完美,进一步的探索对于建立可靠且智能的对话系统是必不可少的。我们的型号和代码将在https://github.com/huawei-noah/pretretaining-language-model/tree/master/master/pangu-bot上提供。
translated by 谷歌翻译
我们介绍了使用多级知识蒸馏(KD)训练的新的交叉语言信息检索(CLIR)模型。老师和学生是异构的系统 - 前者是依赖于机器翻译和单晶IR的管道,而后者执行单个CLIR操作。我们表明学生可以通过优化两个相应的KD目标来学习多语言表示和CLIR。使用英语唯一的检索器的学习多语言表示是使用一种新颖的跨语言对齐算法来实现,使得贪婪地重新定位教师令牌进行对齐。XOR-TYDI基准测试的评估表明,所提出的模型比具有交叉语言标记的IR数据的微调现有方法更有效,精度为25.4召回@ 5kt。
translated by 谷歌翻译
基于深度学习的模型占主导地位的生产推荐系统的当前景观。此外,近年来目睹了模型规模的指数增长 - 从谷歌的2016年模型,最新的Facebook的型号有10亿个参数,具有12万亿参数。型号容量的每次跳跃都有显着的质量增强,这使我们相信100万亿参数的时代即将来临。然而,即使在工业规模数据中心内,这些模型的培训也在挑战。这种困难是从训练计算的惊人的异质性继承 - 模型的嵌入层可以包括总模型尺寸的99.99%,这是极其内存密集的;虽然其余的神经网络越来越多地计算密集型。为支持培训此类巨大模式,迫切需要有效的分布式培训系统。在本文中,我们通过仔细共同设计优化算法和分布式系统架构来解决这一挑战。具体而言,为了确保培训效率和训练精度,我们设计一种新型混合训练算法,其中嵌入层和密集的神经网络由不同的同步机制处理;然后,我们构建一个名为Persia的系统(短暂的并行推荐培训系统,其中包含混合加速),以支持这种混合培训算法。理论上的示范和实证研究均达到100万亿参数,以证明了波斯的系统设计和实施。我们将Pensia公开使用(在https://github.com/persiamml/persia),以便任何人都能够以100万亿参数的规模轻松培训推荐模型。
translated by 谷歌翻译
在机器人远程操作中的研究一直围绕着行动规范 - 从连续关节控制到离散的最终效果姿势控制。但是,这些以机器人为中心的接口通常需要具有广泛机器人专业知识的熟练操作员。为了使非专家用户可以访问远程操作,我们提出了框架“场景编辑为teleperation”(座位),其中关键的想法是将传统的“以机器人为中心的”界面转换为“以场景为中心的”界面 - 而是通过控制机器人,用户专注于通过操纵现实世界对象的数字双胞胎来指定任务的目标。结果,用户可以在没有任何机器人硬件的任何专业知识的情况下执行远程关系。为了实现这一目标,我们利用一种类别 - 不合时宜的场景完整算法,该算法将现实世界工作空间(带有未知对象)转换为可操作的虚拟场景表示和一个动作捕捉算法,并在生成机器人的动作计划之前对其进行改进的动作捕捉算法。为了训练算法,我们在过程中生成了一个大规模的,多样的套件组装数据集,其中包含模仿现实世界对象套件任务的对象芯对。我们在模拟和现实世界中的实验表明,我们的框架提高了6DOF套件组装任务的效率和成功率。一项用户研究表明,与替代机器人以机器人为中心的界面相比,座椅框架参与者获得了更高的任务成功率,并报告了主观工作量较低。可以在https://www.youtube.com/watch?v=-ndr3MKPBQQ上找到视频。
translated by 谷歌翻译
Finding the mixed Nash equilibria (MNE) of a two-player zero sum continuous game is an important and challenging problem in machine learning. A canonical algorithm to finding the MNE is the noisy gradient descent ascent method which in the infinite particle limit gives rise to the {\em Mean-Field Gradient Descent Ascent} (GDA) dynamics on the space of probability measures. In this paper, we first study the convergence of a two-scale Mean-Field GDA dynamics for finding the MNE of the entropy-regularized objective. More precisely we show that for any fixed positive temperature (or regularization parameter), the two-scale Mean-Field GDA with a {\em finite} scale ratio converges to exponentially to the unique MNE without assuming the convexity or concavity of the interaction potential. The key ingredient of our proof lies in the construction of new Lyapunov functions that dissipate exponentially along the Mean-Field GDA. We further study the simulated annealing of the Mean-Field GDA dynamics. We show that with a temperature schedule that decays logarithmically in time the annealed Mean-Field GDA converges to the MNE of the original unregularized objective function.
translated by 谷歌翻译
Recent works have impressively demonstrated that there exists a subnetwork in randomly initialized convolutional neural networks (CNNs) that can match the performance of the fully trained dense networks at initialization, without any optimization of the weights of the network (i.e., untrained networks). However, the presence of such untrained subnetworks in graph neural networks (GNNs) still remains mysterious. In this paper we carry out the first-of-its-kind exploration of discovering matching untrained GNNs. With sparsity as the core tool, we can find \textit{untrained sparse subnetworks} at the initialization, that can match the performance of \textit{fully trained dense} GNNs. Besides this already encouraging finding of comparable performance, we show that the found untrained subnetworks can substantially mitigate the GNN over-smoothing problem, hence becoming a powerful tool to enable deeper GNNs without bells and whistles. We also observe that such sparse untrained subnetworks have appealing performance in out-of-distribution detection and robustness of input perturbations. We evaluate our method across widely-used GNN architectures on various popular datasets including the Open Graph Benchmark (OGB).
translated by 谷歌翻译
The diverse demands of different summarization tasks and their high annotation costs are driving a need for few-shot summarization. However, despite the emergence of many summarization tasks and datasets, the current training paradigm for few-shot summarization systems ignores potentially shareable knowledge in heterogeneous datasets. To this end, we propose \textsc{UniSumm}, a unified few-shot summarization model pre-trained with multiple summarization tasks and can be prefix-tuned to excel at any few-shot summarization datasets. Meanwhile, to better evaluate few-shot summarization systems, under the principles of diversity and robustness, we assemble and publicize a new benchmark \textsc{SummZoo}. It consists of $8$ diverse summarization tasks with multiple sets of few-shot samples for each task, covering both monologue and dialogue domains. Experimental results and ablation studies show that \textsc{UniSumm} outperforms strong baseline systems by a large margin across all tasks in \textsc{SummZoo} under both automatic and human evaluations. We release our code and benchmark at \url{https://github.com/microsoft/UniSumm}.
translated by 谷歌翻译
Controllable summarization allows users to generate customized summaries with specified attributes. However, due to the lack of designated annotations of controlled summaries, existing works have to craft pseudo datasets by adapting generic summarization benchmarks. Furthermore, most research focuses on controlling single attributes individually (e.g., a short summary or a highly abstractive summary) rather than controlling a mix of attributes together (e.g., a short and highly abstractive summary). In this paper, we propose MACSum, the first human-annotated summarization dataset for controlling mixed attributes. It contains source texts from two domains, news articles and dialogues, with human-annotated summaries controlled by five designed attributes (Length, Extractiveness, Specificity, Topic, and Speaker). We propose two simple and effective parameter-efficient approaches for the new task of mixed controllable summarization based on hard prompt tuning and soft prefix tuning. Results and analysis demonstrate that hard prompt models yield the best performance on all metrics and human evaluations. However, mixed-attribute control is still challenging for summarization tasks. Our dataset and code are available at https://github.com/psunlpgroup/MACSum.
translated by 谷歌翻译